

Using Netflow & Open Source Tools for Network Behavioral Analysis

Yves B. Desharnais, MBA, CISSP, PCIP

BSides Calgary 2017 – October 19, 2017

Disclaimer

- This presentation is the result of my experience and only represents my understanding, and is not endorsed by anyone other than myself
- YMMV I had to do a lot of "printf" debugging to get things working
- I do not guarantee I will fix any issue in the code (I'm a Ruby newbie)

About Yves

- IT/InfoSec Expert generalist.
- Over 16 years professional experience (IT/Infosec)
- Background in software development, Unix/Linux administration
- Author of books on PCI DSS including
 - PCI DSS Scope methodology and approach (one of 2 public methodologies at the time) CC-BY-SA

External Firewall

About this talk

- Story about necessity being the mother of inventions
- Could have been called: Extreme PCI DSS Scope Reduction or how we remediated a medium size flat-network in 19 weeks
- But the approach and tools developed have much broader use
- It started with a LinkedIn message ...

Project Overview

From interview: Status

- 2nd year PCI DSS compliance extension (< 5 months left)
 acquired company network
- flat network, mostly VMs, no patching/hardening
- few diagrams used to prepare system migrations to the new network (i.e. incomplete documentation)
- card number tokenization in use
- very competent IT staff

How to achieve compliance?

- This called for massive reduction in scope if they were to have any chance of achieving compliance
- With limited information on applications, we needed to identify what talked on the network to whom and on what protocols...
- first thought: span port and packet capture, but speaking to network friend I learned of the NetFlow protocol

Start of contract High-level plan after 24h

- 6 major steps
 - 1. Scope identification and reduction
 - 2. Vulnerability Management / Penetration Testing
 - 3. RBAC Controls
 - 4. Remediate systems (patching hardening)
 - 5. Logging and Monitoring (of the CDE)
 - 6. Miscellaneous
 - Policies and Procedures
 - Review business Processes
 - Security Awareness Training
- Other than step 6, all depend on step 1
- Other steps are subject for another talk

NetFlow version overview

	5	9	10 (IPFix)			
Owner of Standard	Cisco	Cisco	IETF			
RFC		3954 (©2004)	7011 (©2013)			
Format	Fixed	Templat	ate-based			
IP version	IPv4	Any (v4 <i>,</i> v6)	Any (v4, v6) & Ethernet			
Equipment Supporting	Older Cisco switches/routers	Newer Cisco, some other network providers	Most other providers (including VMWare)			

* Sflow is not NetFlow, it is sampled and not useful for our purposes

How to capture and analyze NetFlow?

- Market research little time, and little budget
- Many tools supported NetFlow (including NTOP, SiLK) none met my needs for scoping
- Roll-your-own with either <u>Logstash</u> or <u>Fluentd</u> both ruby based
- Logstash (famously the L in the ELK stack) Ruby/J (requires JDK, more portable)
- Fluentd is more decentralized Ruby/C (uses less RAM)
- Both are basically data aggregator/transformations engines using plugins, aka the *nix command line on steroids but using JSON
- I could describe further.... But I'd rather show you

(Controlled) Demos

- Demos are controlled by using saved PCAP files (tcpdump, tcpreplay) – can allow comparison when performing changes
- Demo slides are captured from what is shown in the talk
- Instructions, code, and this presentation will be available online after the talk

- Standard NetFlow Plugin (fluent-plugin-netflow)
- PCAP: 9 packets v5 and v9 (v5.pcap)
- Output is JSON (JavaScript Object Notation)

2016-08-23T09:27:42-04:00 netflow.event {"version":5,"uptime":1743829144
,"flow_records":30,"flow_seq_num":2913226023,"engine_type":0,"engine_id":0,"samp
ling_algorithm":0,"sampling_interval":0,"ipv4_src_addr":"10.4.65.172","ipv4_dst_
addr":"10.1.4.151","ipv4_next_hop":"10.1.0.3","input_snmp":14,"output_snmp":2,"i
n_pkts":1,"in_bytes":40,"first_switched":1743825392,"last_switched":1743825392,"
l4_src_port":57599,"l4_dst_port":80,"tcp_flags":20,"protocol":6,"src_tos":0,"src
_as":0,"dst_as":0,"src_mask":24,"dst_mask":24,"host":"192.168.2.32"}

- Warning in td-agent.log:
 - No matching template for host="192.168.2.32" source_id=0 flowset_id=265
 - This is because v9 are template-based and we haven't received templates yet (time between templates being sent is a parameter from network devices)

[warn]: No matching template for host="192.168.2.32" source_id=0 flowset_id=265
[warn]: No matching template for host="192.168.2.32" source_id=0 flowset_id=256

- Standard NetFlow Plugin (fluent-plugin-netflow)
- PCAP: same 9 packets v5 and v9 (v5.pcap)
- Output is CSV
- Use initially with: "sort | uniq | grep" -> transfer to PC, filter with Excel
- Data for v5 only (same "no matching template" v9 issue)

"5","192.168.2.32","10.1.8.61","10.1.43.12","389","53171","6" "5","192.168.2.32","10.4.65.164","10.1.1.15","55855","80","6" "5","192.168.2.32","10.4.65.164","10.1.1.15","55855","80","6" "5","192.168.2.32","10.1.3.241","10.1.34.130","1035","161","17" "5","192.168.2.32","10.1.34.130","10.1.3.241","161","1035","17" "5","192.168.2.32","10.1.34.130","10.1.3.241","161","1035","17" "5","192.168.2.32","10.1.34.130","10.1.3.241","161","1035","17"

- Standard NetFlow Plugin (fluent-plugin-netflow)
- PCAP: new files v9 (v9cleanly.pcap) and v10 (v10.pcap) from VMWare ESXi
- Output is CSV
- There were v9 bugs that I fixed (printf!) and submitted (without really understanding why...)
- New v9 issue in plugin:

2017-10-14 21:58:12 -0400 [warn]: Skip unsupported field type=33001 length=12 2017-10-14 21:58:12 -0400 [warn]: Skip unsupported field type=40000 length=65

- "Skip unsupported field" Fields in template are provider defined (and can be added manually)
- And Version 10 is not supported!

[warn]: Unsupported Netflow version v10: Fixnum

- New (reworked) NetFlow/IPFix Plugin (netflowipfix_input) support for v5, v9, v10 (IPFix)
- PCAP: 1000 v10 packets (v10-1000.pcap)

• But JSON includes the full data ... different names in different versions

2016-08-23T14:37:33-04:00 netflow.event {"version":"10","flow_seq_num ":"4063237","flowset_id":"256","sourceIPv4Address":"10.195.64.31","destinatio nIPv4Address":"10.195.64.130","octetDeltaCount":"992","packetDeltaCount":"1", "flowStartMilliseconds":"1471977439000","flowEndMilliseconds":"1471977439000" ,"sourceTransportPort":"3268","destinationTransportPort":"48940","ingressInte rface":"1881","egressInterface":"1794","layer2SegmentId":"0","protocolIdentif ier":"6","flowEndReason":"1","tcpControlBits":"6146","ipClassOfService":"128" ,"maximumTTL":"1","flowDirection":"0","paddingOctets":"[]","host":"192.168.2. 32"}

- New (reworked) NetFlow/IPFix Plugin (netflowipfix_input)
- PCAP: multiple (v5.pcap, v10-1000.pcap, v9cleanly.pcap)
- Workflow using Fluentd plugins () => complex to create and managed
- Output to multiple files, but could recombine using longer workflows
 [root@netflowpres td-agent]# ls /var/log/td-agent/demo5/ netflow-v10-csv.20160823.log.gz netflow-v5-csv.20160823.log.gz netflow-v10-json.20160823.log.gz netflow-v5-json.20160823.log.gz

"10","192.168.2.32","10.195.64.165","10.195.64.16","6969","63144","TCP" /var/log/td-agent/demo5/netflow-v10-csv.20160823.log.gz

"5","192.168.2.32","10.64.1.8","10.64.1.2","123","123","UDP" /var/log/td-agent/demo5/netflow-v5-csv.20160823.log.gz (END)

- New (reworked) NetFlow/IPFix Plugin (netflowipfix_input)
- PCAP: multiple (v5.pcap, v10-1000.pcap, v9cleanly.pcap)
- New plugin to normalize traffic for my use to replace workflow, allows for simpler config file
- CSV output, still using Excel for analysis

"10","192.168.2.32","10.42.54.30","10.195.64.57","161","55591","17","UDP" "10","192.168.2.32","10.195.64.121","10.195.64.104","443","62575","6","TCP" "10","192.168.2.32","10.195.64.121","10.195.64.104","443","62575","6","TCP" "10","192.168.2.32","10.42.140.100","10.195.64.70","0","0","1","ICMP"

- New (reworked) NetFlow/IPFix Plugin (netflowipfix_input)
- PCAP: 1000 v10 packets (v10-1000.pcap)
- New plugin to normalize traffic for my use to replace workflow
- Matching ACLs (CSV format) IDS or Firewalls rules validation functionality
- CSV output, still using Excel for analysis

"10","192.168.2.32","10.195.64.4","224.0.0.2","1985","1985","17","UDP","nomatch" "10","192.168.2.32","10.195.64.33","10.195.64.62","88","15598","6","TCP","KERBEROS" "10","192.168.2.32","10.195.64.33","10.195.64.62","88","15598","6","TCP","KERBEROS" "10","192.168.2.32","10.195.64.39","224.0.0.252","59920","5355","17","UDP","HOSTMON" "10","192.168.2.32","10.195.64.33","10.195.64.62","88","15598","6","TCP","KERBEROS"

- New (reworked) NetFlow/IPFix Plugin (netflowipfix_input)
- PCAP: 1000 v10 packets (v10-1000.pcap)
- New plugin to normalize traffic for my use to replace workflow
- Output to MySQL for (easier) analysis

MariaDB [demo8]> select * from nf limit 10; ++										
n: port	+ id t	added protocol	+	repo dstzone	+ rtinghost acldirect	src: ion	++ ip aclno	dstip aclentryid +	srcport	dst
 57 	+ 1 2	2017-10- TCP 2017-10-	+ 16 05:48: 10 16 05:48:	30 192. NULL 31 192.	+ 168.2.32 NULL 168.2.32	10.: 10.:	++ 195.64.130 nomatch	10.195.64.61 NULL 10.195.64.61	6391	425 415

- Full final system with other plugins
 - How do we know there are new systems on the network?
 - New IP in NetFlow and PING sweeps (nmap cron job)
 - How do we know directionality of flows (dynamic ports and services using same port e.g. tcp/123)
 - Add new IP to a list (new plugin)
 - Have a periodic process perform port scans
 - We can split traffic into
 - Known services Flows
 - Unknown services Flows
 - Daily and overall
- Using MySQL, nmap (pings, port scans)

Solution Issues / Parting Thoughts

- Netflow
 - is UDP, so risk of packet loss keep collectors close to source (and distribute processed information)
 - Multiple devices could provide duplicate traffic information
 - Different devices provide different templates, offer different possibilities
- Fluentd
 - Can be setup in hierarchy for distributed sites
 - has other uses: Logging and Monitoring (using nxlog)
 - Can be combined with other tools (elasticsearch, etc.)
- Solution
 - May require more manual edits and tweaks
 - New plugins are not packaged using gems (Ruby packaging system)

References

• Everything is published on www.PCIresources.com

- Blog Post including links to
 - Instructions / Source code
 - This presentation
- PCI Resources Scoping Model and Approach

• Blog post URL:

www.PCIresources.com/blog/bsides-calgary-2017-netflow